A mathematical model of rat collecting duct. I. Flow effects on transport and urinary acidification.

نویسنده

  • Alan M Weinstein
چکیده

A mathematical model of the rat collecting duct (CD) has been developed by concatenating previously published models of cortical (Weinstein AM. Am J Physiol Renal Physiol 280: F1072-F1092, 2001); outer medullary (Weinstein AM. Am J Physiol Renal Physiol 279: F24-F45, 2000); and inner medullary segments (Weinstein AM. Am J Physiol Renal Physiol 274: F841-F855, 1998). Starting with end-distal tubular flow rate and composition, plus interstitial solute profiles, the model predicts urinary solute flows, including the buffer concentrations required to assess net acid excretion. In the model CD, the interstitial corticomedullary osmotic gradient provides the basis for the flow effect on the transport of several solutes. For substances that have an interstitial accumulation and that can have diffusive secretion (e.g., urea and NH(4)(+)), enhanced luminal flow increases excretion by decreasing luminal accumulation. For substances that are reabsorbed (e.g., K+ and HCO(3)(-)), and for which luminal accumulation can enhance reabsorption, increasing luminal flow again increases excretion by decreasing luminal solute concentration. In model calculations, flow-dependent increases in HCO(3)(-) and NH(4)(+) approximately balance, so net acid excretion is little changed by flow, albeit at a higher urinary pH. The model identifies delivery flow rate to the CD as a potent determinant of urinary pH, with high flows blunting maximal acidification. At even modestly high flows (9 nl x min-1. tubule-1, with 6% of filtered Na+ entering the CD), the model cannot achieve a urinary pH <5.5 unless the delivered HCO(3)(-) concentration is extremely low (<2 mM). Nevertheless, simulation of Na2SO4 diuresis does yield both an increase in net acid excretion and a decrease in urinary HCO(3)(-) (i.e., a decrease in pH) despite the increase in urinary flow. This model should provide a tool for examining hypotheses regarding transport defects underlying distal renal tubular acidosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mathematical model of rat collecting duct. II. Effect of buffer delivery on urinary acidification.

A mathematical model of the rat collecting duct (CD) is used to examine the effect of delivered load of bicarbonate and nonbicarbonate buffer on urinary acidification. Increasing the delivered load of HCO(3)(-) produces bicarbonaturia, and, with luminal carbonic anhydrase absent, induces a disequilibrium luminal pH and a postequilibration increase in urinary PCO2. At baseline flows, this disequ...

متن کامل

Potassium transport in the distal tubule and collecting duct of the rat.

Because of recent conflicting results, micropuncture studies were performed to clarify the respective role of the distal convoluted tubule and collecting duct in the regulation of urinary potassium excretion. Five groups of Sprague-Dawley rats were studied: group I, hydropenia (n = 10); group II, Ringer loading (n = 7); group III, acute KC1 loading (n = 6); group IV, mannitol diuresis (n = 6); ...

متن کامل

A mathematical model of distal nephron acidification: diuretic effects.

Through their action on the distal nephron (DN), diuretics may produce systemic acid-base disturbances: metabolic alkalosis with thiazides or loop diuretics and metabolic acidosis with amiloride. Enhanced acid excretion may be due to a local effect on the diuretic target cell (a shift of Na+ reabsorption from NaCl transport to Na+/H+ exchange), or an effect at a distance: namely, increases in l...

متن کامل

A mathematical model of rat collecting duct. III. Paradigms for distal acidification defects.

The present clinical taxonomy of distal renal tubular acidoses includes "gradient," "secretory," and "voltage" defects. These categories refer to presumed collecting duct defects in which the epithelium may be abnormally permeable and unable to sustain an ion gradient, in which luminal proton ATPases are defective, or in which electrogenic Na+ reabsorption is impaired and luminal electronegativ...

متن کامل

A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results.

A new, region-based mathematical model of the urine concentrating mechanism of the rat renal medulla was used to investigate the significance of transport and structural properties revealed in anatomic studies. The model simulates preferential interactions among tubules and vessels by representing concentric regions that are centered on a vascular bundle in the outer medulla (OM) and on a colle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 283 6  شماره 

صفحات  -

تاریخ انتشار 2002